1,204 research outputs found

    Dry mergers and the formation of early-type galaxies: constraints from lensing and dynamics

    Full text link
    Dissipationless (gas-free or "dry") mergers have been suggested to play a major role in the formation and evolution of early-type galaxies, particularly in growing their mass and size without altering their stellar populations. We perform a new test of the dry merger hypothesis by comparing N-body simulations of realistic systems to empirical constraints provided by recent studies of lens early-type galaxies. We find that major and minor dry mergers: i) preserve the nearly isothermal structure of early-type galaxies within the observed scatter; ii) do not change more than the observed scatter the ratio between total mass M and "virial" mass R_e*sigma/2G (where R_e is the half-light radius and sigma the projected velocity dispersion); iii) increase strongly galaxy sizes [as M^(0.85+/-0.17)] and weakly velocity dispersions [as M^(0.06+/-0.08)] with mass, thus moving galaxies away from the local observed M-R_e and M-sigma relations; iv) introduce substantial scatter in the M-R_e and M-sigma relations. Our findings imply that, unless there is a high degree of fine tuning of the mix of progenitors and types of interactions, present-day massive early-type galaxies cannot have assembled more than ~50% of their mass, and increased their size by more than a factor ~1.8, via dry merging.Comment: ApJ, accepted. 16 pages, 11 figure

    The Structure & Dynamics of Massive Early-type Galaxies: On Homology, Isothermality and Isotropy inside one Effective Radius

    Get PDF
    Based on 58 SLACS strong-lens early-type galaxies with direct total-mass and stellar-velocity dispersion measurements, we find that inside one effective radius massive elliptical galaxies with M_eff >= 3x10^10 M_sun are well-approximated by a power-law ellipsoid with an average logaritmic density slope of = -dlog(rho_tot)/dlog(r)=2.085^{+0.025}_{-0.018} (random error on mean) for isotropic orbits with beta_r=0, +-0.1 (syst.) and sigma_gamma' <= 0.20^{+0.04}_{-0.02} intrinsic scatter (all errors indicate the 68 percent CL). We find no correlation of gamma'_LD with galaxy mass (M_eff), rescaled radius (i.e. R_einst/R_eff) or redshift, despite intrinsic differences in density-slope between galaxies. Based on scaling relations, the average logarithmic density slope can be derived in an alternative manner, fully independent from dynamics, yielding =1.959 +- 0.077. Agreement between the two values is reached for =0.45 +- 0.25, consistent with mild radial anisotropy. This agreement supports the robustness of our results, despite the increase in mass-to-light ratio with total galaxy mass: M_eff ~ L_{V,eff}^(1.363+-0.056). We conclude that massive early-type galaxies are structurally close-to homologous with close-to isothermal total density profiles (<=10 percent intrinsic scatter) and have at most some mild radial anisotropy. Our results provide new observational limits on galaxy formation and evolution scenarios, covering four Gyr look-back time.Comment: Accepted for publication by ApJL; 4 pages, 2 figure

    Environmental Effects in the Evolution of Galactic Bulges

    Get PDF
    We investigate possible environmental trends in the evolution of galactic bulges over the redshift range 0<z<0.6. For this purpose, we construct the Fundamental Plane (FP) for cluster and field samples at redshifts =0.4 and =0.54 using surface photometry based on HST imaging and velocity dispersions based on Keck spectroscopy. As a reference point for our study we include data for pure ellipticals, which we model as single-component Sersic profiles; whereas for multi-component galaxies we undertake decompositions using Sersic and exponential models for the bulge and disk respectively. Although the FP for both distant cluster and field samples are offset from the local relation, consistent with evolutionary trends found in earlier studies, we detect significant differences in the zero point of ~=0.2 dex between the field and cluster samples at a given redshift. For both clusters, the environmentally-dependent offset is in the sense expected for an accelerated evolution of bulges in dense environments. By matching the mass range of our samples, we confirm that this difference does not arise as a result of the mass-dependent downsizing effects seen in larger field samples. Our result is also consistent with the hypothesis that - at fixed mass and environment - the star formation histories of galactic bulges and pure spheroids are indistinguishable, and difficult to reconcile with the picture whereby the majority of large bulges form primarily via secular processes within spiral galaxies.Comment: 5 pages, 3 figures, accepted for publication in ApJ Letter

    The initial mass function of early-type galaxies

    Get PDF
    We determine an absolute calibration of the initial mass function (IMF) of early-type galaxies, by studying a sample of 56 gravitational lenses identified by the SLACS Survey. Under the assumption of standard Navarro, Frenk & White dark matter halos, a combination of lensing, dynamical, and stellar population synthesis models is used to disentangle the stellar and dark matter contribution for each lens. We define an "IMF mismatch" parameter \alpha=M*(L+D)/M*(SPS) as the ratio of stellar mass inferred by a joint lensing and dynamical models (M*(L+D)) to the current stellar mass inferred from stellar populations synthesis models (M*(SPS)). We find that a Salpeter IMF provides stellar masses in agreement with those inferred by lensing and dynamical models (=0.00+-0.03+-0.02), while a Chabrier IMF underestimates them (=0.25+-0.03+-0.02). A tentative trend is found, in the sense that \alpha appears to increase with galaxy velocity dispersion. Taken at face value, this result would imply a non universal IMF, perhaps dependent on metallicity, age, or abundance ratios of the stellar populations. Alternatively, the observed trend may imply non-universal dark matter halos with inner density slope increasing with velocity dispersion. While the degeneracy between the two interpretations cannot be broken without additional information, the data imply that massive early-type galaxies cannot have both a universal IMF and universal dark matter halos.Comment: 10 pages 4 figures. Resubmitted to ApJ taking into account referee's comment

    The Sloan Lens ACS Survey. IX. Colors, Lensing and Stellar Masses of Early-type Galaxies

    Full text link
    We present the current photometric dataset for the Sloan Lens ACS (SLACS) Survey, including HST photometry from ACS, WFPC2, and NICMOS. These data have enabled the confirmation of an additional 15 grade `A' (certain) lens systems, bringing the number of SLACS grade `A' lenses to 85; including 13 grade `B' (likely) systems, SLACS has identified nearly 100 lenses and lens candidates. Approximately 80% of the grade `A' systems have elliptical morphologies while ~10% show spiral structure; the remaining lenses have lenticular morphologies. Spectroscopic redshifts for the lens and source are available for every system, making SLACS the largest homogeneous dataset of galaxy-scale lenses to date. We have developed a novel Bayesian stellar population analysis code to determine robust stellar masses with accurate error estimates. We apply this code to deep, high-resolution HST imaging and determine stellar masses with typical statistical errors of 0.1 dex; we find that these stellar masses are unbiased compared to estimates obtained using SDSS photometry, provided that informative priors are used. The stellar masses range from 10^10.5 to 10^11.8 M⊙_\odot and the typical stellar mass fraction within the Einstein radius is 0.4, assuming a Chabrier IMF. The ensemble properties of the SLACS lens galaxies, e.g. stellar masses and projected ellipticities, appear to be indistinguishable from other SDSS galaxies with similar stellar velocity dispersions. This further supports that SLACS lenses are representative of the overall population of massive early-type galaxies with M* >~ 10^11 M⊙_\odot, and are therefore an ideal dataset to investigate the kpc-scale distribution of luminous and dark matter in galaxies out to z ~ 0.5.Comment: 20 pages, 18 figures, 5 tables, published in Ap

    Can dry merging explain the size evolution of early-type galaxies?

    Full text link
    The characteristic size of early-type galaxies (ETGs) of given stellar mass is observed to increase significantly with cosmic time, from redshift z>2 to the present. A popular explanation for this size evolution is that ETGs grow through dissipationless ("dry") mergers, thus becoming less compact. Combining N-body simulations with up-to-date scaling relations of local ETGs, we show that such an explanation is problematic, because dry mergers do not decrease the galaxy stellar-mass surface-density enough to explain the observed size evolution, and also introduce substantial scatter in the scaling relations. Based on our set of simulations, we estimate that major and minor dry mergers increase half-light radius and projected velocity dispersion with stellar mass (M) as M^(1.09+/-0.29) and M^(0.07+/-0.11), respectively. This implies that: 1) if the high-z ETGs are indeed as dense as estimated, they cannot evolve into present-day ETGs via dry mergers; 2) present-day ETGs cannot have assembled more than ~45% of their stellar mass via dry mergers. Alternatively, dry mergers could be reconciled with the observations if there was extreme fine tuning between merger history and galaxy properties, at variance with our assumptions. Full cosmological simulations will be needed to evaluate whether this fine-tuned solution is acceptable.Comment: 5 pages, 2 figures. Accepted for publication in ApJ Letter

    Inference of the Cold Dark Matter substructure mass function at z=0.2 using strong gravitational lenses

    Get PDF
    We present the results of a search for galaxy substructures in a sample of 11 gravitational lens galaxies from the Sloan Lens ACS Survey. We find no significant detection of mass clumps, except for a luminous satellite in the system SDSS J0956+5110. We use these non-detections, in combination with a previous detection in the system SDSS J0946+1006, to derive constraints on the substructure mass function in massive early-type host galaxies with an average redshift z ~ 0.2 and an average velocity dispersion of 270 km/s. We perform a Bayesian inference on the substructure mass function, within a median region of about 32 kpc squared around the Einstein radius (~4.2 kpc). We infer a mean projected substructure mass fraction f=0.0076−0.0052+0.0208f = 0.0076^{+0.0208}_{-0.0052} at the 68 percent confidence level and a substructure mass function slope α\alpha < 2.93 at the 95 percent confidence level for a uniform prior probability density on alpha. For a Gaussian prior based on Cold Dark Matter (CDM) simulations, we infer f=0.0064−0.0042+0.0080f = 0 .0064^{+0.0080}_{-0.0042} and a slope of α\alpha = 1.90−0.098+0.098^{+0.098}_{-0.098} at the 68 percent confidence level. Since only one substructure was detected in the full sample, we have little information on the mass function slope, which is therefore poorly constrained (i.e. the Bayes factor shows no positive preference for any of the two models).The inferred fraction is consistent with the expectations from CDM simulations and with inference from flux ratio anomalies at the 68 percent confidence level.Comment: Accepted for publication on MNRAS, some typos corrected and some important references adde
    • …
    corecore